from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(max_depth=2)
model.fit(X_train,y_train)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2)
y = df['Survived']
y_pred = model.predict(X_test)
X = df[['Sex', 'Age']].copy()
from sklearn.metrics import accuracy_score
acc = accuracy_score(y_test, y_pred)
print('Accuracy = ', acc)
df.dropna(inplace=True)
X['Sex'] = X['Sex'].map({'male':1, 'female':0})
ลองนำ code ของ Neural Network ตัวนี้ไปปรับใช้ เพื่อให้ได้ค่า Accuracy สูงขึ้น
from sklearn.neural_network import MLPClassifier
model = MLPClassifier(hidden_layer_sizes=(1, 1), activation='relu')
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(y_test, y_pred)
print('Accuracy = ', acc)